Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
Computers, Materials and Continua ; 75(2):3883-3901, 2023.
Article in English | Scopus | ID: covidwho-2319309

ABSTRACT

The COVID-19 pandemic has devastated our daily lives, leaving horrific repercussions in its aftermath. Due to its rapid spread, it was quite difficult for medical personnel to diagnose it in such a big quantity. Patients who test positive for Covid-19 are diagnosed via a nasal PCR test. In comparison, polymerase chain reaction (PCR) findings take a few hours to a few days. The PCR test is expensive, although the government may bear expenses in certain places. Furthermore, subsets of the population resist invasive testing like swabs. Therefore, chest X-rays or Computerized Vomography (CT) scans are preferred in most cases, and more importantly, they are non-invasive, inexpensive, and provide a faster response time. Recent advances in Artificial Intelligence (AI), in combination with state-of-the-art methods, have allowed for the diagnosis of COVID-19 using chest x-rays. This article proposes a method for classifying COVID-19 as positive or negative on a decentralized dataset that is based on the Federated learning scheme. In order to build a progressive global COVID-19 classification model, two edge devices are employed to train the model on their respective localized dataset, and a 3-layered custom Convolutional Neural Network (CNN) model is used in the process of training the model, which can be deployed from the server. These two edge devices then communicate their learned parameter and weight to the server, where it aggregates and updates the global model. The proposed model is trained using an image dataset that can be found on Kaggle. There are more than 13,000 X-ray images in Kaggle Database collection, from that collection 9000 images of Normal and COVID-19 positive images are used. Each edge node possesses a different number of images;edge node 1 has 3200 images, while edge node 2 has 5800. There is no association between the datasets of the various nodes that are included in the network. By doing it in this manner, each of the nodes will have access to a separate image collection that has no correlation with each other. The diagnosis of COVID-19 has become considerably more efficient with the installation of the suggested algorithm and dataset, and the findings that we have obtained are quite encouraging. © 2023 Tech Science Press. All rights reserved.

2.
Computers, Materials and Continua ; 71(2):4677-4699, 2022.
Article in English | Scopus | ID: covidwho-1629987

ABSTRACT

Since World Health Organization (WHO) has declared the Coronavirus disease (COVID-19) a global pandemic, the world has changed. All life’s fields and daily habits have moved to adapt to this new situation. According to WHO, the probability of such virus pandemics in the future is high, and recommends preparing for worse situations. To this end, this work provides a framework for monitoring, tracking, and fighting COVID-19 and future pandemics. The proposed framework deploys unmanned aerial vehicles (UAVs), e.g.;quadcopter and drone, integrated with artificial intelligence (AI) and Internet of Things (IoT) to monitor and fight COVID-19. It consists of two main systems;AI/IoT for COVID-19 monitoring and drone-based IoT system for sterilizing. The two systems are integrated with the IoT paradigm and the developed algorithms are implemented on distributed fog units connected to the IoT network and controlled by software-defined networking (SDN). The proposed work is built based on a thermal camera mounted in a face-shield, or on a helmet that can be used by people during pandemics. The detected images, thermal images, are processed by the developed AI algorithm that is built based on the convolutional neural network (CNN). The drone system can be called, by the IoT system connected to the helmet, once infected cases are detected. The drone is used for sterilizing the area that contains multiple infected people. The proposed framework employs a single centralized SDN controller to control the network operations. The developed system is experimentally evaluated, and the results are introduced. Results indicate that the developed framework provides a novel, efficient scheme for monitoring and fighting COVID-19 and other future pandemics. © 2022 Tech Science Press. All rights reserved.

3.
Intelligent Automation and Soft Computing ; 32(1):255-270, 2022.
Article in English | Scopus | ID: covidwho-1503136

ABSTRACT

Coronavirus disease (COVID-19) is a big problem that scares people all over the world. Life over the world has changed, new aspects for daily life have been introduced. A main problem with COVID-19 is the way it spreads. Covid-19 spreads, primarily, through contact with an infected person when they cough or sneeze, or with an infected surface. Thus, a novel way to make a protec-tion against COVID-19 is to stay away or make yourself isolated from infected people and surfaces. To this end, this work, mainly, aims to design and develop a novel auto-sterilized suit embedded with some medical sensors and other Internet of Things (IoT) devices to provide the required level of isolation, safety, tracking and monitoring of COVID-19 and other pandemic diseases. The developed suit is an auto-sterilized suit for medical purposes and for daily life use. The sterilizing process of the suit is controlled by the IoT paradigm to provide the required control and interface in an automated way. According to the location of the user, wearing the suit, an appropriate sterilizing mode is activated automa-tically and the suit is sterilized via distributed nozzles over the suit. Furthermore, the distributed medical sensors represent a wireless body area network (WBAN) that is integrated with an IoT gateway to provide periodic measures of medical healthcare parameters such as body temperature, breathing rate, oxygen saturation level and pulse rate. These measures are used to identify the user’s health and the probability of being infected by COVID-19. All measures are transferred to the remote IoT cloud to analyze these data and monitor people around the day. In case of unusual measures, users are moved among three databases associated with health, infected and properly infected users. The suit is under prototyping and the work is mainly introduced to present the design stages. © 2022, Tech Science Press. All rights reserved.

4.
Intelligent Automation and Soft Computing ; 31(3):1561-1575, 2022.
Article in English | Web of Science | ID: covidwho-1485752

ABSTRACT

Automated diagnosis based on medical images is a very promising trend in modern healthcare services. For the task of automated diagnosis, there should be flexibility to deal with an enormous amount of data represented in the form of medical images. In addition, efficient algorithms that could be adapted according to the nature of images should be used. The importance of automated medical diagnosis has been maximized with the evolution of COVID-19 pandemic. COVID-19 first appeared in China, Wuhan, and then it has exploded in the whole world with a very bad impact on our daily life. The third wave of COVID-19 in the third world is really a disaster in current days, especially with the emergence of the delta variant of COVID-19 that is widespread. Required inspections should be carried out to monitor the COVID-19 spread in daily life and allow primary diagnosis of suspected cases, and long-term clinical laboratory monitoring. Healthcare professionals or radiologists can exploit AI (Artificial Intelligence) tools to quickly and reliably identify the cases of COVID-19. This paper introduces a DCNN (Deep Convolutional Neural Network) framework for chest X-ray and CT image classification based on TL (Transfer Learning). The objective is to perform multi-class and binary classification of the images in order to determine pneumonia and COVID-19 case. The TL is feasible, when using a small dataset by transferring knowledge from natural image classification to medical image classification. Two types of TL are used. The first type is fine-tuning of the DenseNet121, Densenet169, DenseNet201, ResNet50, ResNet152, VGG16, and VGG19 models. The second type is deep tuning of the LeNet-5, AlexNet, Inception naive v1, and VGG16 models. Extensive tests have been carried out on datasets of chest X-ray and CT images with different training/testing ratios of 80%:20%, 70%:30%, and 60%:40%. Experimental results on 9,270 chest X-ray ray and 2,762 chest CT images acquired from different institutions show that the TL is effective with an average accuracy of 98.49%.

5.
Computers, Materials and Continua ; 70(3):4393-4410, 2022.
Article in English | Scopus | ID: covidwho-1481333

ABSTRACT

COVID-19 remains to proliferate precipitously in the world. It has significantly influenced public health, the world economy, and the persons’ lives. Hence, there is a need to speed up the diagnosis and precautions to deal with COVID-19 patients. With this explosion of this pandemic, there is a need for automated diagnosis tools to help specialists based on medical images. This paper presents a hybrid Convolutional Neural Network (CNN)-based classification and segmentation approach for COVID-19 detection from Computed Tomography (CT) images. The proposed approach is employed to classify and segment the COVID-19, pneumonia, and normal CT images. The classification stage is firstly applied to detect and classify the input medical CT images. Then, the segmentation stage is performed to distinguish between pneumonia and COVID-19 CT images. The classification stage is implemented based on a simple and efficient CNN deep learning model. This model comprises four Rectified Linear Units (ReLUs), four batch normalization layers, and four convolutional (Conv) layers. The Conv layer depends on filters with sizes of 64, 32, 16, and 8. A 2 × 2 window and a stride of 2 are employed in the utilized four max-pooling layers. A soft-max activation function and a Fully-Connected (FC) layer are utilized in the classification stage to perform the detection process. For the segmentation process, the Simplified Pulse Coupled Neural Network (SPCNN) is utilized in the proposed hybrid approach. The proposed segmentation approach is based on salient object detection to localize the COVID-19 or pneumonia region, accurately. To summarize the contributions of the paper, we can say that the classification process with a CNN model can be the first stage a highly-effective automated diagnosis system. Once the images are accepted by the system, it is possible to perform further processing through a segmentation process to isolate the regions of interest in the images. The region of interest can be assesses both automatically and through experts. This strategy helps so much in saving the time and efforts of specialists with the explosion of COVID-19 pandemic in the world. The proposed classification approach is applied for different scenarios of 80%, 70%, or 60% of the data for training and 20%, 30, or 40% of the data for testing, respectively. In these scenarios, the proposed approach achieves classification accuracies of 100%, 99.45%, and 98.55%, respectively. Thus, the obtained results demonstrate and prove the efficacy of the proposed approach for assisting the specialists in automated medical diagnosis services. © 2022 Tech Science Press. All rights reserved.

6.
Computers, Materials and Continua ; 70(1):1141-1157, 2021.
Article in English | Scopus | ID: covidwho-1405620

ABSTRACT

In developing countries, medical diagnosis is expensive and time consuming. Hence, automatic diagnosis can be a good cheap alternative. This task can be performed with artificial intelligence tools such as deep Convolutional Neural Networks (CNNs). These tools can be used on medical images to speed up the diagnosis process and save the efforts of specialists. The deep CNNs allow direct learning from the medical images. However, the accessibility of classified data is still the largest challenge, particularly in the field of medical imaging. Transfer learning can deliver an effective and promising solution by transferring knowledge from universal object detection CNNs to medical image classification. However, because of the inhomogeneity and enormous overlap in intensity between medical images in terms of features in the diagnosis of Pneumonia and COVID-19, transfer learning is not usually a robust solution. Single-Image Super-Resolution (SISR) can facilitate learning to enhance computer vision functions, apart from enhancing perceptual image consistency. Consequently, it helps in showing the main features of images. Motivated by the challenging dilemma of Pneumonia and COVID-19 diagnosis, this paper introduces a hybrid CNN model, namely SIGTra, to generate super-resolution versions of X-ray and CT images. It depends on a Generative Adversarial Network (GAN) for the super-resolution reconstruction problem. Besides, Transfer learning with CNN (TCNN) is adopted for the classification of images. Three different categories of chest X-ray and CT images can be classified with the proposed model. A comparison study is presented between the proposed SIGTra model and the other related CNN models for COVID-19 detection in terms of precision, sensitivity, and accuracy. © 2021 Tech Science Press. All rights reserved.

7.
Computers, Materials and Continua ; 69(1):1323-1341, 2021.
Article in English | Scopus | ID: covidwho-1278930

ABSTRACT

Corona Virus Disease-2019 (COVID-19) continues to spread rapidly in the world. It has dramatically affected daily lives, public health, and the world economy. This paper presents a segmentation and classification framework of COVID-19 images based on deep learning. Firstly, the classification process is employed to discriminate between COVID-19, non-COVID, and pneumonia by Convolutional Neural Network (CNN). Then, the segmentation process is applied for COVID-19 and pneumonia CT images. Finally, the resulting segmented images are used to identify the infected region, whether COVID-19 or pneumonia. The proposed CNN consists of four Convolutional (Conv) layers, four batch normalization layers, and four Rectified Linear Units (ReLUs). The sizes of Conv layer used filters are 8, 16, 32, and 64. Four max-pooling layers are employed with a stride of 2 and a 2 × 2 window. The classification layer comprises a Fully-Connected (FC) layer and a soft-max activation function used to take the classification decision. A novel saliency-based region detection algorithm and an active contour segmentation strategy are applied to segment COVID-19 and pneumonia CT images. The acquired findings substantiate the efficacy of the proposed framework for helping the specialists in automated diagnosis applications. © 2021 Tech Science Press. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL